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I SUMMARY

The purpose of this study was to correlate the experimental diluent

air/primary combustor gas mixing efficiency and downstream temperature dis-

tributions obtained during the Multiple Jet Study (NAS 3-15703) to gas turbine

combustor operating and design variables. The experimental data were generated

by probe measurements from tests on single rows of multiple dilution orifices

(diameters of .64 to 2.54 cm) injected into a low Mach number (M = .03) heated

primary stream (450 0 K to 7500K) in a 10.2 by 30.5 cm duct. The correlations

were developed using power form or exponential equations which related the

various dependent temperature field variables to the independent operating and

design variables.

The dependent mixing and jet penetration parameters correlated at

each downstream data location were: the jet/primary stream mixing efficiency;

the jet temperature and velocity trajectories downstream of the injection ori-

fice in the jet centerplane-of-symmetry; the maximum centerplane temperature

difference (which is on the temperature centerline); the jet half-width values

on each side of the jet centerline in the jet centerplane-of-symmetry; and

the minimum temperature difference values on each side of the centerline.

When coupled with the Gaussian form assumed for the profiles, these parameters

completely define the centerplane temperature distribution at any downstream

location.

The development of the off-centerplane temperature distribution made

use of the observed Gaussian nature of the vertical temperature distribution

at all stations where the flow field was influenced by the diluent jets. The

off-centerplane correlations included the ratio of temperature maximum values

at the lateral planes to the maximum values in the centerplane and the ratios

of jet thermal penetration in the lateral planes to the thermal penetration

in the centerplane. The off-centerplane half-widths were assumed to be equal

to the corresponding centerplane values. Also the ratio of the minimum to

maximum temperature difference at any off-centerplane location was assumed

to equal the corresponding centerplane ratio.
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I Summary (cont.)

The parameters and relationships described above provided the necessary

input for complete characterization of the temperature field downstream of the

diluent injection plane. The range of the operating and design variables used

to develop the various correlations were selected to make the correlations

relevant for use in the design of a wide spectrum of combustors for gas tur-

bine engines. Five independent variables (one operating variable and four

geometric variables) were used to achieve correlation of the dependent para-

meters with the test data. The independent variables used in the correlations

and their ranges were: jet/primary momentum flux ratio, (pV2 )jet/(pV2 primary
(6-60); orifice spacing/jet diameter ratio, S/Dj (2.5-7.5); duct height to

jet diameter ratio, H/DJ (5-20); downstream distance to jet diameter ratio,

X/DJ (1.25 - 30); and lateral distance to jet spacing, Z/S (0-.5). In addi-

tion, diluent to primary flow ratios of .04 to .60 were implicit in the data

but were not required to correlate the data. The correlations were based on

data obtained from a matrix of five axial stations, six lateral stations and

20 vertical stations in the flow field during approximately 50 tests on eleven

orifice row designs.

II INTRODUCTION

The "Program to Correlate Diluent Air/Primary Combustion Gas Mixing

Parameters with Gas Turbine Operating and Design Variables", was conducted

under NASA Lewis Research Center contract NAS 3-18026. The correlations

developed were based on data generated during the Multiple Jet Study (Contract

NAS 3-15703, Ref. 1). A mixing efficiency parameter, termed the energy exchange

efficiency (ET), was defined during the performance of the Multiple Jet Study

and was shown to quantify the diluent/primary stream mixing efficiencies over

a range of test and operating conditions (Ref. (1)). This study extended the

previous study to mathematically define the relationship between ET and the

combustor variables. Also, the study included an investigation of the corre-

lation between the combustor variables and the temperature profiles downstream

of the diluent injection plane. A goal of the program was to develop a general

model which would allow predictions of flow field temperature distributions

as a function of combustor operating and design variables.
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II Introduction (cont.)

Correlations of the penetration and mixing of jets in a crossflow

has application to many problems of current interest, such as:

(1) Cooling of primary combustion gases with diluent air in
gas turbine combustors.

(2) Cooling of hot gas streams in numerous industrial and military
devices.

(3) Film Cooling of combustion chamber walls, turbine blades,
and reentry vehicle nose cones.

(4) The aerodynamics of STOL and VTOL aircraft.

(5) The concentration and paths of pollutants downstream of
industrial chimneys or downstream from discharge lines
leading into rivers or streams..

The results of this study apply most directly to Items (1) and (2)

above. The development of valid correlations for the mixing process between

cool multiple jets and a hot primary gas stream has two principal interrelated

benefits: (1) through proper design of secondary air admission ports, the

combustor weight is reduced and packaging is improved since lengths required

to achieve uniform temperature and mass flux profiles can be minimized, and

(2) the decreased combustor length required for complete mixing will result

in minimum residence time for production of nitrogen oxides.

Although the interaction of subsonic circular and noncircular jets

injected normally into a subsonic mainstream flow has been the subject of

numerous analytical and experimental studies, (Ref. 2-7), most published

works to date have dealt with single jets rather than multiple jets in a

bounded cross flow as required to simulate the gas turbine combustor secondary

air admission problem. Two recent experimental studies, the above mentioned

work done by Aerojet Liquid Rocket Company (Ref. 1) and work done by Case

Western Reserve University (Ref. 8), have produced data for the study of the

interaction of a row of multiple jets in a confined crossflow. Correlation
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II Introduction (cont.)

of a portion of the Reference 1 data has been done by Cox at Pratt & Whitney

Aircraft (Ref. 9 and 10). The present study is based on a larger body of

data than the Reference 9 study and the correlations were derived over a

wider range of variables.

The correlations presented here were developed by relating the

various dependent temperature field variables to the independent operating

and design variables using power form or exponential equations. The basic

forms of the correlating equations were developed from theoretical considera-

tions and from observations of the empirical behavior, with the specific

coefficients and exponents derived from a covariance analysis of the test

data. This technique has led to correlations which are simple to apply

and lead to an insight into the physical processes occurring during pene-

tration and mixing of multiple jets in a confined crossflow.

III TECHNICAL DISCUSSION

A. Data Sample and Method of Analysis

The multiple jet correlations are based on data obtained during

the performance of Contract NAS 3-15703 (Ref. 1). The centerplane correla-

tion equations are based on multiple covariance analyses using over 200 test

data points from eleven orifice row configurations at an average of four test

operating conditions. A summary of the test configurations and operating

conditions is contained in Table I. For the off centerplane evaluation, data

from over 800 test data points was used. Although the correlations were based

on the Reference 1 data, some comparisons are made with the experimental results

of Reference 8. In addition, the results of the present study are compared

with the results of Reference 9, which was based on selected tests from the

Reference 1 data.

The covariance analyses were conducted using ALRC One-Way Multiple

Covariance Analysis Program (FD 0088). The program uses standard multiple

regression and covariance techniques and computational methods. The analysis

may be performed for up to 20 variables and 500 groups. A trans-generation

feature allows for additional variables to be generated or transformed from
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III Technical Discussion (cont.)

the input variables as desired. For the particular requirements of the

"Multiple Jet Correlation Study" the program was modified to accept input

from the mass storage data files created for each dependent parameter.

Five independent variables (one operating variable and four

geometric variables) were used to achieve correlation of the dependent para-

meters with the test data. The independent variables were: jet/primary

momentum flux ratio, (pV2)jet/(PV2)primary; orifice spacing/jet diameter ratio,

S/D j; duct height to jet diameter ratio, H/Dj; downstream distance to jet

diameter ratio, X/Dj; and lateral distance to jet spacing, Z/S. The diluent

jet to primary stream density ratio was an additional parameter which was

varied during the test series. However, over the range of density ratios

tested (1.6, 2.2 and 2.7), no significant influences of the parameter were

observed. Not used as a parameter to correlate the data, but implicit in

the data, were diluent to primary flow ratios of .04 to .60. The correla-

tions were based on data obtained from a matrix of five axial stations, six

lateral stations and 20 vertical stations in the temperature field. The

ranges of the operating and design variables used to develop the various

correlations are given in Table I.

B. Correlating Parameters and Assumptions

1. Mixing Efficiency

A mixing efficiency parameter, termed the energy exchange

efficiency (ET) was defined during the performance of the Multiple Jet Study

(Ref. 1) and was shown to quantify the diluent/primary stream mixing efficiency

over a range of test and operating conditions (Ref. 1, 11). During the present

study the ET values were correlated as a function of the downstream distance,

the combustor momentum flux ratio and the diluent jet size and spacing. The

advantage of developing a correlation for a general mixing efficiency para-

meter, such as ET , in addition to the other temperature field parameters, is

that evaluation of this single parameter will allow the designer to quickly

The orifice spacing to duct height ratio, S/H, also proved to be a valuable

independent parameter, and was used in place of S/Dj in two of the correlations.
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III Technical Discussion (cont.)

estimate the overall efficiency of the diluent/primary stream mixing process

without the need to evaluate the many separate equations necessary for complete

temperature field analysis.

2. Temperature Field Parameters

An illustration of the coordinate system used during the

study together with a representation of the temperature field parameters is

contained on Figure 1. In order to define the dimensionless temperature

field downstream of the diluent injection orifices correlations must be

developed for certain principal parameters and some key observations regarding

the nature of the temperature field must be utilized. To develop the temp-

erature field the diluent jet temperature trajectory in the orifice center-

plane-of-symmetry downstream of the injection orifice must be defined and the

temperature values along this path must be known. In addition, vertical

temperature distribution shape parameters in the orifice centerplane must

be defined (See Figure 1) and the shape of the temperature distribution off

the centerplane must be known.

(a) Jet Trajectory Parameters

The diluent jet trajectory is defined in terms

of the local penetration depth as a function of downstream distance, with

both the penetration and downstream distance nondimensionalized by jet dia-

meter. Both a velocity penetration and a thermal penetration were evaluated

during this study. The velocity penetration, Yv/Dj, is defined as the loca-

tion of the maximum total pressure. The thermal penetration, Yc/Dj, is defined

as the location of the maximum temperature difference. The locus of penetration

with downstream distance defines the trajectories. The thermal penetration has

a direct impact on subsequent correlations for the complete temperature field.

(b) Non-Dimensional Temperature Parameters

The temperature parameter used for this study is

the nondimensional temperature difference in the flow field downstream of jet

injection, theta (i), defined as:
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III Technical Discussion (cont.)

T - T (1)

i T - TJ

where:

. Theta, nondimensional temperature difference at a
i point in the flow field

T = primary flow stagnation temperature

T = jet stagnation temperature

T. = stagnation temperature at a point in the flow field
1

Theta is a measure of the temperature suppression in the flow field. The

value of theta can vary from one, when measured temperature equals the jet

temperature, to zero, when the measured temperature equals the primary stream

temperature.

If complete mixing of the jet and mainstream

flow occurs, the value of theta will be constant and Ti will be everywhere

equal to the ideal equilibrium temperature between jet and mainstream. Thus,

TEB (2)
EB To - T

where:

DEB ideal equilibrium theta

TEB stagnation temperature resulting from complete
thermal energy exchange

The ideal theta is a useful parameter; a comparison between the measured

local theta and the ideal theta provides a means of gauging the local mixing.

The maximum dimensionless temperature difference

on the centerplane, ac,cent' defines the thermal trajectory. For the case of

a single jet in a semi-infinite crossflow, 1 c,cent 0, and ccent is

expressable as c,cent - Xy ' Ref. 7. For multiple jets in a confined flow,
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=1 3c,cent EB' and the power form is not appropriate. If the centerline

temperature decay is expressed as,

= TEB -Tc,cent (3)
T - T
EB j

QHis a measure of the flow field temperature reduction occurring along the

centerline compared to the maximum possible reduction. Since 1 VoZ O,

O can be modeled with the power form. Then ccent can be obtained from

S,cent= c (1 - +EB+ ' (4)

(c) Centerplane Temperature Profiles

The correlation of the thermal trajectory and the

centerline maximum temperature difference are the first steps in a system of

equations to define the flow field temperature distributions. The next step

is the determination of the temperature profile shape factors which will allow

the temperature distribution in the orifice centerplane about the jet centerline

to be predicted. From the work of Holdeman (Ref. 7) and Cox (Ref. 9) and the

data of Reference (1), the assumption of a Gaussian vertical temperature dis-

tribution appears to offer a simple yet accurate means of modeling the data.

Here another important difference between the

single jet flow and the multiple, confined jet flow must be recognized. That

is, 6 does not have to decay to zero with increasing radial distance from the

centerline. Thus the minimum dimensionless temperature difference above and

below the centerline, 6- min,cent may be greater than zero, and must be

correlated. Also, the traditional definition of the half width (the width

where 0 = /2) must be modified such that W - /D. is the distance
c,cent + 1/2 j

from the centerline to where 0 = (c,cent +  mincent)/2 This is necessary

since O'may be everywhere greater than ,cent/2, and the traditional half-c ,cent
width would be undefined.

Using these parameters, the vertical temperature

distribution in the centerplane was defined by:
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III Technical Discussion (cont.)

L /D 2
i/ c =O EXP -In 2. W J (5)

S+1/2/D

where:
+

i = i,cent -- min,cent

c c,cent min,cent

Li/D = local distance from centerline nondimensionalized by
jet diameter

W f+/2/D = plus or minus side half width nondimensionalized by
jet diameter

A schematic drawing of the test duct is shown on Figure 1 with a typical

vertical centerplane temperature profile and temperature field parameters

illustrated.

(d) Lateral Plane Temperature Profiles

Correlations for the vertical temperature dis-

tributions off the centerplane were needed in order to model the complete

temperature field. These off-centerplane correlations included the ratio

of the maximum temperature difference values at the lateral planes to the

centerline values in the centerplane (cz/cent) and the ratios of the jetc,z c,cent
thermal penetration in the lateral planes to the thermal penetration in the

centerplane (Yc,z/Yc,cent). In addition to these correlations, the development

of the off-centerplane temperature distributions made use of the observed

Gaussian nature of the vertical temperature distribution at all stations where

the flow field was influenced by the diluent jets. Also, the observation that

the ratios of the minimum to maximum temperature difference at any off-center-

plane location were essentially equal to the corresponding centerplane ratios

was a key modeling relationship used in defining the complete temperature field.

Another major simplifying assumption, justified by the experimental data, was

that the off-centerplane half-widths were equal to the corresponding center-

plane half-widths.
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III Technical Discussion (cont.)

The parameters and relationships described in

the preceding paragraphs provided the necessary input for complete charac-

terization of the temperature field downstream of the diluent injection plane.

The correlations were developed by relating the various dependent temperature

field variables to the independent operating and design variables using power
form or exponential equations. The basic forms of the correlating equations

were developed from theoretical considerations and from observations of the

empirical behavior, with the specific coefficients and exponents derived

from a covariance analysis of the test data. A summary of the correlation

equations is shown in Table II.

C. Mixing and Centerplane Correlation Equations

1. Energy Exchange Efficiency

An energy exchange efficiency parameter was defined

in Reference 1 by:

(Ti - Tj) (T - T) 100ET  =i T + Wi T -TEB J EB W T
i=l

where:

WJi local jet mass flow rate

W i local primary mass flow rate

WT = total mass flow rate
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III Technical Discussion (cont.)

The energy exchange parameter expresses the mixing effectiveness (in percent)

as the energy exchanged between the cool jets and the hot primary stream, at

any axial station, compared to the energy exchanged if both streams came to

thermal equilibrium.. The ET values have been shown to quantify the diluent/

primary stream mixing efficiencies over a range of test and operating condi-

tions (Ref. 1, 11). During this study the energy exchange parameter has been

correlated to the combustor operating and design variables by the following

relationship:

-a
ET = 100 [1-- e ] (6A)

where: .41 .44 -1.0 .44
a =  .682 J (S/Dj) (H/De ) (X/Dj) (6B)

A plot of the ET correlation equation, which has a one

sigma standard error of prediction of 5.6 is shown on Figure 2. Inspection

of Equations (6A) and (6B) shows ET to be bounded by values of 0 and 100 and

shows the ET prediction to increase with increasing momentum flux ratio, J,

orifice spacing, S/Dj, and downstream distance X/Dj, and orifice size 1/(H/Dj).

The correlation was developed over the ranges of independent variables given

in Table I, but excluded those specific cases (approximately 10% of the data)

where jet over penetration occurred, i.e., cases combining high momentum flux

ratio with large hole size and hole spacing.

2. Jet Velocity Penetration

The correlation obtained for the jet velocity penetration,

Yv/D , was:

.12 .23 .57 .18

Yv/Da = .549 J (S/Dj) (H/D)j (X/D ) (7)

From the form of Equation 7 one may see that increasing momentum flux ratio,

duct height/orifice diameter and/or spacing increases the trajectory path

depth. The agreement between the data and the correlation is shown on Figure 3.
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III Technical Discussion (cont.)

Approximately 86% of the data are within a + 20% band about the prediction line.

This data band is a consequence of the very uniform vertical velocity distri-

bution shown by a large portion of the data. The uniform velocity distribution

caused some random scatter in the location of the maximum velocity values, how-

ever, the covariance analysis indicated good correlation with all of the above

independent variables.

Velocity penetration data was also available from the

work of Kamotani and Greber (Ref. 8). These data indicate less jet velocity

centerline penetration than is predicted by Equation (7), except at the highest

momentum flux ratios when the data from Reference 8 shows greater penetration

than does the prediction. The data from Reference 8, for tests with H/D = 8

and S/D = 2, is shown on Figure 4, along with the corresponding trajectory

predictions using Equation 7. Differences in primary stream boundary layer

effects and jet velocity profiles may partially account for these penetration

differences shown on the figure. The jet velocity profiles from Reference 8

corresponded to fully developed pipe flow while the Reference 1 work used sharp-

edged orifices and the jet velocity profiles were not fully developed. Jet

velocity profile differences between pipe flow and nozzle (or orifice) flow

were observed to cause approximately a 10% reduction in jet penetration for the

pipe compared to the nozzle (Ref. 8). If the corrections for velocity profile

and boundary layer development are made to the predictions on Figure 4 agree-

ment between measured and predicted values is improved at the lower momentum

flux levels, but is worse at J = 72. The variation of the trajectory with

downstream distance appears to be correctly given by Equation (7).

For most of the data surveyed the agreement between the

Reference 8 data and the predictions of Equation (7) appeared best at a momentum

flux ratio of 32. For much of the Reference 8 data low momentum flux ratios

(J = 8) resulted in substantially less penetration than did the data of Reference

1, upon which Equation 7 is based. At high J values the Reference 8 data shows

more penetration than does that of Reference 1. Apparently the influence of

momentum flux ratio on jet penetration from the two sets of data are significantly

different. A log-log plot of the penetration depth as a function of momentum

flux ratio is shown on Figure 5 for both the Reference 8 data and the Reference 1

-12-



III Technical Discussion (cont.)

data with two orifice row configurations, S/D = 2 at H/D = 8 and H/D = 12.

The data is shown at a location 10 diameters downstream of the injection plane,

The data from Reference 1 have a constant exponent on J while the Reference 8

data indicate an increasing exponent on J with increasing J.

3. Jet Thermal Trajectory

The correlation obtained for the jet thermal penetration,

Yc/D , was:

.25 .14 .38 .17 -b
Y c/D = .539 J (S/D ) (H/D ) (X/Dj) e (8)

where:

b = (X/H) 2 (H/S - \j/3.5)/11.0 (9)

As with the velocity trajectory, increasing momentum flux ratio, duct height/

orifice diameter and/or orifice spacing all tend to increase the depth of the

trajectory path. However, for the thermal trajectory an exponential modifier

is used to model path recurving which occurs with under penetration at far

downstream distances. A correlation for Yc/DJ was derived by Cox in Reference

9. The Reference 9 correlation is based on a baseline data case with corrections

to the baseline case obtained from polynomial (up to 4th order) curve fits on

X/DJ. Comparison of the correlation equation (8) with the Reference 9 correla-

tions showed Equation 8 matched the data slightly better than do the Reference

9 correlations. The correlations of Reference 9, due to the polynomial curve

fits, are not applicable for X/Dj : 21.

The agreement between the data and correlation of Equation

8 is shown on Figure 6. As with the velocity trajectory, the thermal trajectory

definition was difficult due to the uniform vertical temperature profiles of a large

portion of the data. Approximately 85% of the data falls in a + 20% band about

the prediction. At the far downstream locations the data scatter is more evident

than at locations near the orifice injection plane. The covariance analyses

indicated significant exponents for all the specified independent variables. The

validity of the trajectory equation is evidenced by the good agreement between
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III Technical Discussion (cont.)

measured and predicted temperature profiles which will be shown in Section IIIE.

4. Jet Centerline Temperature Difference Values

The correlation obtained for the jet temperature centerline

values was:

-. 4f

1.536 J
c,cent X/D 1.15 ( - (EB) + EB

where:

*EB = the ideal theta defined in Equation 2

f = S/H / (l + S/H)

From Equation 10 the temperature centerline values, 'c,centdecrease with

increasing downstream distance and momentum flux ratio and is strongly

influenced by B;EB Also the influences of X/DJ and J on c,cent are coupled

to the spacing, S/H. The agreement between the measured data and the corre-

lation Equation 10 is shown on Figure 7. The data on Figure 7 are shown plotted

as the prediction value as a function of the measured value, since a single

correlation curve as a function of X/DJ can not be drawn due to the variable

power on X/Dj in Equation 10. Approximately 85% of the data falls in a +

10% band about the correlation line.

Centerline temperature difference ratios were measured

for heated jets injected into a cool primary stream in the work done by Kamotani

and Greber in Reference 8. The rates of change of the dimensionless temperature

ratio, ,cent' as a function of downstream distance for the Reference 8 data

were approximately the same as that shown by the cool jets in heated primary

stream data used on this program. A correlation for the jet centerline dimension-

less temperature ratio based on a portion of the Reference 1 data was presented in

Reference 9 as an exponential decay. The form of the Reference 9 equation differed

from the more conventional power form, and the prediction appeared to diverge
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III Technical Discussion (cont.)

from the measured data at large X/Dj, although the limits on 6ccent were

well defined.

5. Plus and Minus Side Minimum Temperature Difference Values

As mentioned previously, recent studies (Ref. 1, 7, and 9)

have shown the vertical temperature distribution in the orifice centerplane

to be approximately Gaussian in nature. Therefore the distribution can be

modeled if the location (Yccent/Dj) and magnitude (' c,cent) of the peak theta

values are known and if the distance from the centerline to some characteristic

theta values (such as a half value) on the near (-) and far (+) injection sides

of the jet centerline can be defined. For the case of single jet injection

the characteristic distance dimension is from the centerline to the theta half

values, ,cent/2. For multiple jet injection temperature difference as low
c,cent

as ccent/2 may not exist on the centerplane. Thus the half-widths, W 1/2/D ,c,cent/2
are defined as the distance from the centerline to the location where:

1/2,cent = c,cent + e-min,cent)/2 (11)

To specify the profile using this definition of the half-width, the ratio,

(0 min,cent)/( c ,ce nt
) must be known for all conditions. The form chosen for

these correlations was:
+

+ -c

/2,cent/ c,cent = 1 -.5 e (12a)

+

for 6 1/2,cent' and the corresponding form for the minimum value:

+

+ -c
S /0= 1 -e (12b)

min,cent c,cent

For the plus side ratio:

+ 1.62 1.5 -3.67 1.1
c = 0.038 J (S/D ) (H/Dj) (X/Dj) (13)

-15-



III Technical Discussion (cont.)

This correlation results in increasing plus side minimum theta ratio values

with increasing downstream distance, X/DJ, increasing momentum flux ratio, 3,

and increasing jet spacing, (S/Dj), and jet diameter, (H/Dj)- . These results

are reasonable because increasing all the above mentioned parameters would

increase jet penetration and thus result in a trend toward higher plus side

theta minimum values.

For the minimum theta values on the minus side of the

jet the correlating function, c , in Equation 12 was:

-.3 -1.4 .9
c = 1.57 J (S/Dj) (X/Dj) (14)

This correlation predicts increasing minus side theta ratios with increasing

downstream distance, but with decreasing momentum flux ratio and orifice

spacing. The orifice size did not significantly influence the minus side

minimum theta ratio. The inverse relationship between the changes in the

minimum theta ratio and changes in momentum flux ratio and spacing is probably

due to the fact that jet penetration increases with J and S/Dj, which would

allow the jet minus side theta values to decay to lower minimum values. The

agreement between the data and the predictions for the plus and minus '1/2,cent

values are shown on Figures 8 and 9 respectively.

6. Plus and Minus Side Half Widths

+

As discussed in the preceding paragraph, the a 1/2,cent values,

(Eq. 11), were the dimensionless temperature parameters used to define a charac-

teristic dimension, the half width, used in the Gaussian dimensionless tempera-

ture distribution equation (Eq. 5). The correlation for the plus side half width

nondimensionalized by the jet diameter, Dj, was:

+ .18 -.25 .5 .5

W 1.2,cent/Dj = .162 J (S/Dj) (H/Dj) (X/Dj) (15)

The correlation equation for the minus side half width was

derived by difference from correlations of jet total half width and plus side

half width. The resulting correlation was:
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III Technical Discussion (cont.)

.15 .27 .5 .12
W l/2,cent/Dj = .2 J (S/Dj) H/DJ (X/D ) (16)

Difficulties encountered in a direct correlation of the minus side half

width were probably a consequence of the very uniform minus side dimension-

less temperature profiles for a large portion of the data. This made defini-

tion of the precise location of the minus side minimum theta values difficult.

The half width correlations can not, by themselves, be

related to changes in the dimensionless temperature profiles since the half

width values must be coupled with the corresponding minimum and centerline

theta values in order to properly interpret the influences on the dimensionless

temperature profiles. For example, if min,cent and are nearly equal

a uniform temperature profile will result, even for very small half width

values.

D. Off-Centerplane Correlations (Z Planes)

Two off-centerplane correlation equations were developed: (1) the

ratio of the maximum temperature difference at the lateral (Z) planes to the

centerline values in the centerplane and; (2) the ratios of the jet thermal

penetration in the lateral (Z) planes to the thermal penetration in the center-

plane. The observed Gaussian nature of the vertical temperature distribution,

at all stations where the flow field was influenced by the diluent jets, was

used to define temperature field profiles at the off centerplane locations.

The data showed the ratio of theta minimum to theta centerline values at any

location off the centerplane were essentially equal to the corresponding center-

plane ratios. Thus the previously developed centerplane minimum theta correla-

tions could be applied at the off centerplane locations. Also, the off center-

plane half-widths were assumed to be equal to the corresponding centerplane

half-widths.

1. Ratios of Maximum Theta Values in Lateral Planes
to Theta Centerline Values in Centerplane, 0c,z/c,cent

The basic form of the correlating equation for the lateral

plane to the centerplane theta ratio 5c,z'ccent was:
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III Technical Discussion (cont.)

c,z c,cent 1  - ccen ( ZS/2 (17)
c,cent

where:

Z local distance from centerplane to plane Z

S/2 distance from centerplane to midplane

This form makes use of the mid to centerplane theta ratios and the lateral

position ratio, Z/(S/2). Using Equation 17 the predicted theta ratios will

be between 0 and 1 and the rate of change of a with Z will go to zero at
c,z

the centerplane. The power on Z will cause the variation of the theta ratio

with lateral distance to be parabolic. A better basic form might be one which

will allow the variation of the theta ratio with lateral distance to contain

an inflection point and have zero slopes at both the centerplane and midplane.

However, at the present time this more sophisticated modeling doesn't appear

justified or necessary. The correlation equation for f /c,mid/c,cent is:

-d
,id/,= 1 - e (18)
c,mid c,cent

where:

.53 -1.53 .83
d = .452 J (S/Dj) (X/Dj) (19)

Thus the midplane to centerplane ratio increases with increasing momentum

flux ratio and downstream distance (more jet spreading) and decreases with

increasing orifice spacing. The dimensionless jet diameter, [H/D ]- I did

not appear to significantly influence the theta ratios.

2. Ratio of Penetration Depth in Lateral Planes to
Penetration Depth on Centerplane, Yc,z/Yc,cent

The basic form of the Yc,z /Yc,cent correlation was

identical to that used for (c /0 ,
c,z c,cent
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III Technical Discussion (cont.)

Y c,mid
Ycz/Yc,cent 1 - - Yc,mid S/2 (20)

with

-g
Yc,mid /Yc,cent - e

where: .67 -1.0 .54

g = .227 J (S/Dj) (X/Dj) (22)

The trends predicted by this correlation are similar to those predicted by

the theta ratio correlation equations.

E. The Complete Temperature Field

The parameters and relationships described above provide the

necessary input for complete characterization of the temperature field down-

stream of the diluent injection plane. A computer code, FIELD, was developed

which incorporated the various equations and relationships into a temperature

field model. These correlation equations were summarized in Table II. A listing

of this code is contained in the Appendix along with a sample input. The predicted

temperature profiles for Figures 10 through 29 were obtained using the FIELD

program.

1. Dimensionless Temperature Profiles in the Centerplane

Predicted and measured dimensionless temperature profiles

in the orifice centerplanes are shown on Figures 10 through 20. The test

configuration matrix of orifice sizes and spacings used to develop the center-

plane correlation equations are shown on Table III along with the momentum flux

ratios surveyed. The specific configurations and momentum flux ratios selected

for centerplane profile illustration are shown on Table IV. The centerplane

profiles are shown for downstream distance to duct height ratios of .25, .50,

1.0 and 2.0, with the exception of the H/DJ = 20 case where X/H values of .125,

.25, .5 and 1.0 were used.
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III Technical Discussion (cont.)

Figure 10 contains data from a H/D = 10.2 and S/D =

3.8 orifice row configuration at a momentum flux ratio of 26.7. This con-

figuration approximates an "average" configuration based on H/DJ and S/Dj

values. Good agreement between the empirical data and the pediction may be

seen at all four downstream planes.

Data obtained with H/D = 10 and momentum flux ratio
J

of 26 is shown on Figures 11, 12 and 13 for orifice spacings, S/Dj, of 2.5,

5.1 and 7.7 respectively. These data show the predicted and measured in-

creases in jet penetration as spacing is increased. Agreement is again good.

between the experimental data and the prediction except for the S/DJ = 7.7

case at the first two planes when the penetration depth is under predicted

by approximately 10%. The data in Figures 11 and 12 were used in demon-

strating the correlation method of Reference 9, and the predictions from

this reference are shown for comparison.

The effect of momentum flux ratio on the predicted and

measured dimensionless temperature profiles are shown by the data of Figures

14 and 15 for nominal H/D = 10 and S/Dj =5 at nominal momentum flux ratios

of 6 and 62 respectively. The data of Figures 14 and 15, along with the

J = 26 data of Figure 12 show the increase of jet penetration with momentum

flux ratio.

The data from tests of the smallest orifices, H/Dj = 20,

at the closest spacing, S/DJ = 2.5 is shown on Figure 16, for a nominal

momentum flux ratio of 25. Both the measured and predicted data show the

small penetration distances achieved at all stations. Agreement between the

prediction and the measured data is very good at the three upstream stations

but only fair at X/H = 1.0. Figures 17 and 18 contain data from tests using

a nominal H/DJ of 15 at S/DJ values of 2.5 and 5.1, respectively, and nominal

momentum flux ratios of 60. Again agreement between the empirical data and

the predictions appears good at most stations and the increase in S/Dj is

shown to increase jet penetration.
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III Technical Discussion (cont.)

Comparison of the measured and predicted profiles for

the largest orifice diameter tested (H/Dj = 5) is shown on Figures 19 and 20

for J = 13.3 and S/DJ = 2.5 and for J = 27.2 and S/DJ = 5, respectively.

The prediction for the J = 13.3 test appears to match measured data well.

For the J = 27.2 case the prediction for X/Dj = 1.3 and X/Dj = 2.5 under-

estimates the jet penetration.

The test conditions used to illustrate the model applica-

bility on Figures 11, 12, 15 and 19 were also used in the study of Reference

9. The Reference 9 predictions are shown on the figures for comparison.

Based on these data the centerplane predictions using the correlations from

this study appear to model the empirical data as well or better than do the

predictions of Reference 9. In addition, the simplicity of the correlations

developed during this study allows easy computation, provides some insight

as to the physical processes occurring during penetration and mixing, and will

allow confident extrapolations.

2. Dimensionless Temperature Profiles in the Lateral (Z)
Planes

Predicted and measured dimensionless temperature profiles

in the lateral planes are shown on Figures 21 through 29. The test configura-

tion matrix of orifice sizes and spacings used to illustrate the lateral

plane profiles are shown in Table V. The lateral planes shown on the figures

are for Z/S = 0.0, (centerplane), Z/S = .2, Z/S = .3, and Z/S = .5 (midplane).

With the exception of Figure 28 which shows data at X/H = .25 all the profiles

are shown at a downstream distance to duct height ratio of 1.0. The data shown

on Figures 21, 22 and 23 are for nominal H/Dj = 10, S/Dj = 5 and nominal

momentum flux ratios of 6, 27 and 62 respectively. Both the measured and pre-

dicted data show the increase in jet penetration and the increasing spreading

of the jet (less profile change with Z lateral plane) as momentum flux ratio

is increased.
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III Technical Discussion (cont.)

Data from tests with a nominal H/D3 = 10 and nominal

momentum flux ratio of 26.0 are shown on Figures 24 and 25 for S/Dj values

of 2.5 and 7.7 respectively. Comparison of these data and the data of

Figure 22 shows the increase in centerplane jet penetration, and the flattening

of the temperature profiles in the Z lateral planes, with increasing'orifice

spacing. Good agreement between predicted and measured temperature profiles

is evident on Figures 21 through 25.

Lateral plane temperature profiles for the smallest

jet diameter, H/Dj = 20 and smallest spacing S/Dj = 2.5 are shown on Figure

26. These data show the flat minus side temperature distribution in both

the Y and Z directions. For the plane shown, X/H = 1.0, the predicted pro-

files underestimate the jet penetration slightly; agreement is better at the

upstream stations as may be seen from the centerplane data of Figure 16.

Predictions for operating and design conditions used

in the study of Reference 9 are shown on Figures 27, 28 and 29, with the

predictions from this reference (or Reference 10) shown for comparison.

The data of Figure 27 are for X/H = 1, J = 57.3, H/DJ = 15 and S/DJ = 2.5.

Figure 28 shows data at X/H = .25, J = 24.7, H/Dj = 15 and S/DJ = 5 and the

Figure 29 data are for the largest orifice tested, H/DJ = 5, at X/H = 1.0,

S/Dj = 2.5 and J = 13.3. A comparison of the predictions based on the corre-

lations developed during this study with those of Reference 9 show somewhat

closer agreement with the measured data using the techniques developed in

this report.

IV CONCLUSIONS

A. Correlation Parameters

The mixing efficiency and temperature distribution downstream

from a row of multiple dilution orifices can be adequately predicted as a

function of downstream distance over the range surveyed on this study provided
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IV Conclusions (cont.)

only that three independent variables are known:

(1) The jet to primary stream momentum flux ratio, J
(2) The nondimensional diluent orifice diameter, (H/D )

-1.0

(3) The nondimensional diluent orifice spacing, S/DJ

This set of independent variables will allow predictions to be made for the

following parameters:

(1) The mixing efficiency (energy exchange efficiency), ET
(2) The jet velocity and temperature centerline penetration

Y v/D , Yc/Dj

(3) The maximum nondimensional temperature values in the
centerplane

(4) Shape factors which allow the entire temperature field
to be predicted from the assumed Gaussian profile shape

B. Model Precision

The correlations developed during this study can be used over

the ranges of variables given in Table I with reasonable confidence that the

predictions will be within the one sigma standard error of prediction value

given for each correlation in Table II. Extrapolation somewhat beyond the

range of momentum flux ratios and downstream distances listed in Table I

should yield reasonable predictions. However, extrapolations beyond the

specified ranges of orifice size and spacing should be done with caution.

That is, the correlations given will not reduce correctly to the limits

of a slot jet or a single jet. Direct use of these correlations for combustor

applications involves the implicit assumptions that the range of density ratios

and turbulence levels surveyed during the test program of reference 1 were

adequate to have allowed characterization if a significant influence existed.
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TABLE I

SUMMARY OF DATA RANGES

NOMINAL
PARAMETER RANGE

Momentum Flux Ratio, J 5.0 - 60.0

Flow Rate Ratio,W /WW .04 - .60

Density Ratio, PJ/p. 1.6 - 2.7

Velocity Ratio, VJ/V. 1.59 - 5.33

Duct Height/Jet Diameter, H/DJ  5 - 20

Jet Spacing/Jet Diameter, S/DJ 2.5 - 7.5

Jet Spacing/Duct Height, S/H .125 - 1.0

Downstream Distance/Duct Height, X/H .125 - 2.0

Downstream Distance/Jet Diameter, X/Dj 1.25 - 30.

Primary Stream Reynolds Number .3 - .8 x 105

Primary Stream Temperature 450 - 750 0 K

Primary Stream Velocity 15 m/sec

Jet Velocity 25 - 121 m/sec

Jet Temperature 290 0 K
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TABLE II

SUMMARY OF CORRELATION EQUATIONS

STANDARD

PARAMETER CORRELATION EQUATION ERROR OF PREDICTION

Energy Exchange Efficiency E = 100 1 1.0 - e-a] 5.6192

.41 .44 -1.0 .44
a=0.682 (J) (S/DJ) (H/Dj) (X/Dj)

Y .25 .14 .38 .17 -b

Thermal Trajectory -- 0.539 (J) (S/D ) (H/Dj) (X/Dj) e 0.7518

b = (X/H) 2 (H/S -4J/3.5)/11.0

Y .12 .23 .57 .18

- =Velocity 0.549 (J) (S/Dj) (H/D) (X/D) 0.7735

Velocity Trajectory J
NI

Centerplane Temperature Difference Ratio I .536(J

Lc(J X/ i)11 (1.0 - "EB) + 0 EB 0.0360

(S!N) .5
f (S/H)

1+ (S/H)

+ +
Plus-Side Minimum Temperature Q min,cent -c 0.1216
Difference Ratio1.0 - e

ce1.62 1.5
c = 0.038 (J) (S/D)

(H/Dj)-3.67 (X/D) 1.1



TABLE II (cont.)
STANDARD

PARAMETER CORRELATION EQUATION ERROR OF PREDICTION

Minus-Side Minimum Temperature cent -c-
Difference Ratio in,cent = [1.0 - e ] 0.734

c,cent -.3 -1.4 .9
c" = 1.57 (J) (S/D ) (X/Dj)

W+  .18 -.25 .5 .5
Plus Side Half Width 1/2,cent = 0.162 (J) (S/D ) (H/D ) (X/DJ) 0.6598

+ .15 .27 .5 .12
Minus Side Half Width W I/2,cent = .20 (J) (S/Dj) (H/D) (X/D J) 0.5503

Dj

-d

Midplane to Centerplane c,mid - de 0.1120
Theta Ratio 'ccent .53 -1.53 .83

d = 0.452 (J) (S/Dj) (X/D J)

Off-Centerplane to Centerplane c,z = 1.0 - c,mid Z 2.0 0.1109
Theta Ratio c,cent cen 0.1109c,cent .- e]4cen

Y -g
Midplane to Centerplane y ,mid = [1.0 - e 0.1446
Penetration Ratio c,cent .67 -10 .54

g = 0.227 (J) (S/D ) (X/DJ)

Off-Centerplane to Centerplane c,z 1.0 - cmid Z 0.1208
Penetration Ratio Ycet / j

c,cent cent



TABLE III

MATRIX OF TEST CONFIGURATIONS AND MOMENTUM FLUX
RATIOS USED TO DEVELOP CORRELATIONS

S/D
2.5 3.75 -j- 5.0 7.5

H/D

5 6-39(0) N.T(2)  6-60 N.T.

7.5 6-60 6-26 (4)  N.T. N.T.

10 6-60 6-30 (5)  6-60 6-60

15 14-60 (3)  N.T. 6-60 N.T.

20 6-60 N.T. N.T. N.T.

(1) No Tests Conducted with J Greater than 39

(2) N.T. = Not Tested

(3) J = 6 Test not Used - Invalid Thermocouple Data

(4) J = 60 Test Not Used - Stored Test Data Could Not be Recovered

Actual S/Dj = 3.54; H/Dj = 7.07

(5) No Tests Conducted with J Greater than 30
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TABLE IV

MATRIX OF TEST CONFIGURATIONS AND MOMENTUM
FLUX RATIOS USED TO ILLUSTRATE CENTERPLANE DIMENSIONLESS TEMPERATURE PROFILE

S/DJ

2.5 3.75 5.0 7.5

H/DJ

5 J=13 N.T.(1) J=27.2 N.T.

7.5 Not (2) Not N.T. N.T.
Used Used

J=6

10 J=25 J=25 J=26 J=25
J=60

15 J=57 N.T. J=60 N.T.

20 J=25 N.T. N.T. N.T.

(1) Not Tested

(2) Tested But Not Illustrated
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TABLE V

MATRIX OF TEST CONFIGURATION AND MOMENTUM FLUX RATIO
USED TO ILLUSTRATE LATERAL PLANE DIMENSIONLESS TEMPERATURE PROFILES

S/D

2.5 3.75 5.0 7.5

H/Dj

5 J=13.3 Not N.T.
X/H=1.0 N.T. Used

7.5 Not (2) Not N.T. N.T.
Used Used

10 J=25 Not J=6 J=25
X/H=1.0 Used J=26 X/H=1.0

J=60
X/H=1.0

15 J=57 N.T. J=24.7 N.T.
X/H=1.0 X/H=.25

20 J=25 N.T. N.T. N.T.
X/H=1.0

(1) Not Tested

(2) Tested But Not Illustrated
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APPENDIX

TEMPERATURE FIELD PROGRAM

1. C
2, C THIS PROGRAM wILLUSE-THE EQUATIONS DEVELOPED DURING THE! MULTIPLE'
3, C JET STLDY,NAS318026i TO DEFINE THE THERMAL FIELD DOWNSTREAM OFf
4. C. MULTIPLE JET INJECTION PORTS
5. C
6, C
7, REAL N.NIDTH
8, C .OMMON / DIM / YC(10),YV(10),YH(20)oXH(6),XOJCIO),ZSC6),

9: TICAP(10),T1MAX(10),HAFPOS(l0) ,HAFNEG(10),PWIDTHC10) ET(I0).
10. *TWIDTH(10),NW!DTH(l0),TZZI6,21 ),Y1LC641l),EL(10),H,
it, ATHETA(10,21,20),XTHETA(10,21,20) ,T!TLECl3'),YD(20),YMIDC20),TMID(

20
12, *),TBAR(10)
13, COMMON / SINGLE / HDRRH~OCDRVELSDJRWDOTHDJoTIDEALXJS0I

aRIEMP
is, COMMON.*/ RPLOT / XPLDT(22),YHPER(22),ITABNDSTRMNOPLOTC6)DYFIR3To
16, *YDEL,XFIRST,XDEL
17. C
18, H='4.0
19, C **.AXIAL DIST.* V LOCATION# AND LATERPLI LOCATION ARRAYS *

20, DATA XH/, 125, ,250, ,500, 1.00,1 ,50,2,0O/
21, DATA VH/,03'4,.,81,,127 174,,221,.267,,314,.361,.M08,.M5*..501,
22, *,5'45,.595, ,6'41..688. .735, .782, ,828, .875o, 922/
23, DATA ZS/.0,.2..'4,b,,8s1,O/
.4NAMELIST/INPUT/HD, CD. XJSD, SMRRHO, TIDEAL' R VEL, RTEMP, RWDOT, IPRNT

25. *, ITABPNDSIRMNOPL0TVFIRSTYDELXFIRSTXDELIIPLOT
26. 1 FORMAT(13Ab)

27,READ (5,1) TITLE
28, IFCCD.LT,01)COS,62
29, READC5,INPUTEND:2000)
30. WRITE(bINPJT)
31, C *** CONVERT FROM X/H AND V/H TO X/DJ AND V/DJ,
32. 2 FORMAT(1HI,13A6)
33, DO 50 1:1,6

34: 50 XDJ(I)XH(I)*HD/SQRT(CD)
35, DO 60 Ialp2o
36. 60 YD(I)=VH(I)*HD/SGRT(CD)
37, IF(RWDOT.EQ.0, )WRITlE(6,3)
38, IF(RWDUT,EQ,0,)RWJDOT*,20
39, SOJ=SD/SQRT(CD)
40, HDJ:HD/SQ4T(C0)
41, IF CRRHJ.EQ,0, )RRHO;2,2
402. IF (SHEQ,0,)SH=SD/HD
43. IF (TIDEAL,EQ,0,)TlDEAL3I4WDOT
1(4 DO 100 11,b6
415, C *** ET EQUATIZON *

46, -N2:.,8818* (XDJ(I )**.'44)*(SDJ**.44)*(HDJ*Aw1,0)*(XJ%*11)
47. ET(I)=100,OA(1 ,0-EXP(FN2))
48, C *** CAP THETA AND MAX THETA EQUATIONS3 **A
49. EX-N:SQRT(SH/(1.4SH))
50, TICAP(I):( 1,53b*(Xj*h..4)*(XDJCI)h*-19151)**CEXN)
51, T1MAX(I)3TICAP(I)A(1 ,.TIDEAL)4TIOEALI
52. C A*A PENETRATIO3N EQUATIONS
53, C *A* THERMAL ***
54,, YC(I)=,53Q*(XJ**,25) h(SDJ~h,1'4)*(HDJA*,38)*(XDJ(?)*A.17)
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FIELD

55, EEXaEXP('(X$(I) A2,0)*(1,/SH*((XJ* 9*5)/i35))/j,0)
56, YC(I)=YC(I)*EEX
57, C
58, C *** VELOCITY ***
59, YV(I).549A*(XJ**,12)*(SDJ*I,23)*(HDJ**,57)*(XDJ(I)**o18)
60, C
bl, C *** PLUS AND MINUS SIDE HALF VALUES
62, C
63, FX ,038*(XJ**t,62)*(XOJ(I)**I,I)*(HDJ**-3,67)*(SDJ**I,S)
64, HAFPDS(I)t,*0.5*EXP(.FX)
65, C66, FXt,57*t(xJ**-,3)*(5DJ**I,4)*(XDJ(Z)**,9)

67, HAFNEG(I)loe,5*EXP(wFX)
68, C
69, C *** HALF WIDTHS
70, C
71, TlIOTH(I)X,3578*(XJA*,17)*(HDJ**,5)*(XDJ(1)**,3)
72. PWIDTH(1),16b23*(XJ**,18)*CHDJ**,S)*(XDJ(I)**S )*(SDJ** ,25)
73, NWIDTH(1)BTWIDTH(I)-PWIDTH(1)
74, IF((YC(I)#PIDTH(I)),GT,HDJ) PWIDTH(I)HDJ-YC(I)
75, IF((YC(I)-NIDTH(I)).LT,0,) NNIDTH(1)=YC(I)
76, 100 CONTINUE
77, C
78, C *** END OF CENTER PLANE PARAMETER CALCULATIONS
79, C
80, C *** BEGIN OFF CENTERPLANE EVALUATIONS - DATA INDICATES THE:RATIO'
81, C: OF + AND - THETA HALF VALUES TO THETA MAX OFF CENTERPLANE IS:
82, C ESENTIALLY EUGAL TO THE CENTER PLANE RATIOALSO, THE OFF
83, C CENTERPLANE HALFlIDTHS ARE EQUAL TO THE: CENTERPLANE HALFWIDTHS
84, C
85, C
86, C
87, DO 150 1=:16
88, FX=,4565*(XJ**,528)*(SDJ**.1,529)*(XDJ(I)**,828)
89, TMID(I)=1,-EXP(*FX)
90, FX:.227*(XJ**,b7)*(SDJ**1,0)*(XDJCI)**,54)
91, 150 YMID(I)=1,.EXP(-FX)
q2, C
93, C, *** CALCULATE OFF CENTERPLANE THETA AND' Y HA ***
94. DO 200 IcIb
95, DO 200 K=1 6
96, TZZ(IK) t..-(I*, THID(I))*ZS(K)**2
97, 200 YZZ(I,K)= ,.-(1,'YMID(I))*ZS(K)**2
98, C
99, C *** NOW WILL ASSUME GAUSSIAN DISTRIBUTION TO:GET FLOW FIELD ****
100, C FIRST REPEAT THETA AND Y MAX VALUES FOR HALF SPAN FOUR TIMES
101, Dl 250 I=1,6
102, N=O
103, DO 210 K=7,11
104, KI:5-N
105, TZZ(IK):TZZ[IK )
106, YvZ(IK)=YZZ(IKI)
107, 210 N=N+1
108, N=2
109, DO 220 K=12,16
110, KIzN
.It. TZZ(IK)=TZ?(I*Kl)
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FIELD

112o - YZZ(IFK)3YZZ(I*Kt)

113, 220 NsN0I
114, NaO
115, DO 230 K017o21
116, KI=;l N
117, TZZ(IK)2TZZ(I#KI)
115, YZZ(I K)ZYZZ(IoKI)
119, 230 NmN+1
120, 250 CONTINUE,
121, C
122, C
123, C
124, C
125, C
126, DO 500 M=1,6
127, DO 500 Ke1,21
128, DO 500 II1,20
129, YMAXDYZZ(MpK)*YC(M)
130, IF(YD(I).GE,YMAX) GO TO 400
131. YIYMAX-YD(I)
132, TMIN=2.*HAF4EG(M)*TIMAX(M)-*TMAX(M)
133, XEXP2EXP(.ALOG(2.)*(YI/NWIDTH(M))**2)
134, THETA(M,KI)UTZZ(M,K)*((TIMAX(M)-TMIN)*XEXPtTMIN)
135, GO TO 500
13b, 400 YI=YD(I)-YHAX
137, TMIN22,*HAFPOS(M)*TIMAX(MJ).TMAX(M)
138, XEXP=EXP(-ALOG(2.)*(YI/PWIDTH(M))**2)
139, THETA(MKlI)=TZZC(MK)*((TIMAX(M)-TMIN)

*XEXP+TMIN)
140, 500 CONTINUE
141, C.
142, C, THE FLOW FIELD HAS BEEN DEVELOPED OVER A TWO S SPAN FROM CENTER:

143o C PLANE OF ORIFICE TO CENTER PLANE OF ORIFICE, NOW TRANSPOSE,

144, C TO A FLOW FIELD THAT GOES FRO4 MIDPLANEiTO MIDPLANE OVER 28.SPAN

145, C
146, C:
147, C
148, DO 700 Mt1,6
149, DO 700 K91,16
150, DO 700 I1I,ZO
151, 700 XTHETA(MKoI)=THETA(MeK+SlI)
152, DO 720 M=1,6
153, DO 720 K=17,21
154, DO 720 1=1,20
155, 720 XTHETA(MKpI):THETA(MK-ISeI)
156, C" *** GET AVERAGE THETA

157, DO 750 M:1,6
158, TBAR(M)mO,
159, DO 750 Kx1,21
160, DO 750 1=1,20
161, 750 TBAR(M)=TBAR(M)+XTHETA(MrKol)/20,/21,
162, C
163, C. PATTERN FACTOR
164, C
165, DO 760 M=1,6
166, 760 DEL(M)=TBAR(M)/(I,*TBAR(M))
167, C
168, rF(IPRNT.EO,O)CALL PRINTI
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FIELD

169, 2000 CONTINUE'

170, 3 FORMAT(IOX,'*** FLOW RATIO INPUT AS ZERO, SET EQUAL TO 0,20 '
171, C
172, C
173, C
174, C
175, IF(IPLOTEQ,O)CALL PLOTI

176, END

END ELT, TIMEI 0,416b SECONDS,
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PLOT I

I. SUBROUTINEiPLOTI
2, REAL NOIDTH
3. COMMON / DIM / YC(10),YVC.10),YH(20),XHC6),XDJ(10),ZS(b),TICAP(10),
(43 *TIMAX( 10) .AFPOS( 10) ,HAFNEG(1O) ,PWIDTH(1O) ,ET(l0) ,TWtDTH(10)o
51 *NWIDTH(10), TZZ(6,21 ),VZZ(6,21),0EL(10),HTHETA(10.21,Z0),
6, *XTIETA(l0,21,20),TITLE(13), YO(20),YMID(2O),TMIO(20)oTBAR(1O)
7. COMMON / SING~LE /HDRRH$,CeRVELoSDJRWDOTHDJTIDEALXJSDRRTEMP
8, COMMON / RPLOT /XPLOT(22),YHPER(22),ITAB,NDSTRMNOPLOT(b),YF!RST,

9, *YDELXF1IRSTPXDEL
10. IF (NDSTRM.EQ,0)NDSTRM'4
it, CALL PLOTS(0,0,7)

1z' CALL PLOT(TgF,10#e3)
13, C . (NM)m NjMdER OiF POINT LOCATIONS IN DUCT HEIGHT *

['4, C!~ (NDSTRM)= DOIWN57REAM LOCATION OF LATERAL PLOTS '

is, C.~ (NOPL)T)a DOOdNSTREAM OR LATERAL LOCATIONS TO BE DELETED
1b. NM%20
17, IF(ITA3,E0.1)CALL, SYM6OL(0sQ,7a0oo20flCENTERPLANE TEMPERATURE,-PROF
18. *ILE C(JMPARISONSt,0..,43)
19, IF(ITAB.EQ,2)CALL SYM1BOL(0.1#70e.20,'LATERAL PLANE. TEMPERATUREI PR
20, *UFILE C'MPARISLNS'.0,0QS)
21, CALL SYM8JL'%3,8pb.5##10, 'Jxlt0,,2)
22. CALL SYM8UL(5.7o6.S,.10,'S/OJu',O.,5)
23, CALL SYMTOL(8.1,6.5,,10, 'H/DJx',0,,5)

20,CALL NUMHER(4,'J#b,5, I0#XJvQ,,1)
25, CALL NU'U3ER(b,7sb,5, ,10#SDJ#0.,2)
2b. CALL NUMIER(9.1,65,10sHDJ0.,1)
27, IF(ITAS.EQ,2)cALL SYMBOL('4,8tb,0p, 10, 'X/Mx',O,,4)
28. IF(IrAB.EQ,2)CALL SYMBOL(7,2,6o,0 ,0,X/OJ2t#,,)
29, IF(ITAf3,LQ.2)CALL NUM8ER(5,7,6.0, ,lOXM(NDSTRM)#,3)
30, IF(ITABE00 2)CALL -NUMBER(8.2,b,0, * 1,XDJ(NDSTRMhoO~1)
31, CALL AXIS(0.#,,'PERCENT OF DUCT HEIGHTlp2?s5ef909sYFIRST,YDEL0
32, YHPER(NM4'1)=YFIRST
33, YIHPER(NM+2)zYDEL
31*, XPLOT(NM*I)xXFIRST
35, XPLOT(NM42)*XOEL
36, MMmQ
37, NMD~l
38, 10 DO 15 Mal,b
39. IF(NOPLtJT(NMD),LQM)GO TO 15
110. DO 13 I;1,20
41, YHPER(I)=100,*YH(I)
12, IF(IIAB.EQ, 1)XPLOT(I)uXTHETA(H6,I)
'*3, IF(ITABE0,2)XPLOT(I ).XTHETA(4dOSTRMM.5, I)

44, 13 CONTINUE
15 IF(mm,EQ.o)GO TO 1*4

46, CALL A)IS(0,,0v,' 1#S,5,v9D*#YFIRST,YDEL)
47, 14l CALL AXIS(0,,0,, 'THETAI,'5,3.,0,,XFIRSTXDEL)

48. MM=HMM~
49, CALL LINE(XPLOT#YHPERpNM, 1,0t1)
50. IF(ITABEO,1 )CALL SYMBOL(0,7,5,5,,10,'X/DJU',0,,5)

53, IF(ITA8.EQ, 1)CALL NUMT3ERC1,b,5&5#9*l0,XDI(M)po0,3
5e.IF (1TA-.EG,?)CALL SYM80L(0.7#6,2.#,0'?/Hzt,,,,)
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PLOT!

55, IF(ITA8.EQ,2)CALL NUMBER(1 .8p,5p,l.1OZS(M)POf1)
56, IF(ITAB.EQ,2.ANQ,m,EQ.1)CALLSYMBDL(O,6,5.3,,1Oe '(CENTERPLANE)',o,

57, *0 13)
58, IF(ITA8OEQ,2,AND.M,EQ.6)CALL SYMBDL(O.8,.S.3,.lO. (M!DPLANE)',OsolQ
59. k
60, CALL PLOT(3,,,0,-3)

61,15 IF (NOPLOT (NMl0) ,L,M)NMDVNMD~l
62, CALL PLUT0toolei.,99)

RETURHN
64, END

END ELY, TIMEI 0,138I SECONDS.
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PRINT I

1, SUBROUTINE PRINTI
2, REAL NWIDTH
3, COMMON / DIM / YC(10),YV(1O),YH(20),XH(b),XDJ(I0),ZS(6),
4, OTICAPU0O), TIMAX(I0)p HAFFOS(10)t HAFNEG(I0)p PI4IDTH(10)i ET(10)#

6, *TEAIP12)XTEA #12)TITLECI3),YD(20),Yt4ID(20)gTMID(2O
7, *)FTBAR(10)

8, COMMON / SINGLE / HDRRHOCDRVELSDJRWDDTHDJTIOEALXJSD,
9, ARIEMP

to, DIMENSIOiN ZZS(21),YS(20)

12, DATA ZZS/ Ol ~ 3  4
13, *1 .6,1,7,1 .8,1,9,2,0/
I1is, WRITE(b,17)
is, WRI TE(6, 6)TITLE
16, WR ITE ( b II),
110 WRITE(6,2)XJOSD
18, WRI TE(b,3)RTEMPPMD
19. WRITE (bL)RRHU#CD
20, WRITE(6,5)RVEL#SDJ
21, WRITE(6#6)RVWDOToHDJ
22. WRITE (bp7)TIDEALPHSIPH
23, WRITE(6,8)
214, WRIIE(b,9)
25, WRI E(6P20)
26, DO 100 4-1#
27, 100 WRITE(b, 10)XH(M),XDJ(M)eET(M)hTICAP(M),TIMAXCM),YC(H),YY(M),TOARCM
28, A),DEL(M)
29, DO 110 lrlp20
30, 110 YS(I)=YHCI)*HD
31, DO 500 M:1,P6
32. wRITE(b,l1)
33. WRITE(b, 12)Xtl(M)PXDJ(M)
34, WRI7E(b, 13) (ZZS(K)vKm1,11)
35, WRITE(bPI4)
36, DO 150 1--1,20

38, WRIE(b, 12)XHCM),XDJ(M)

141, DO0 160 121,20
412, 160 wRIrE(6, 15)YH(I),YD(I),YS(I)(XTHETA(MKI),K:11,21)

13 , 500 CON71NUE
44, 1 FORMAT(///20X,I*A*** OPERATING CONDITIONS ***'T0'**DESIGN:
45, *CONDITIONS A****I//)
Li6,1 2 FORMAT(20Xv'MOM.NTUM FLUX RATIO; ',Vb,2,T60,'DjRIFICESPACING,S/Du-
a7, * ',T90oF6.3)
48, 3 FORMAT(20X,ITEMPERATURE RATIOJ It'F6,2rT60oORZFICE. SIZE, H/D. 3-
49,. * '190#F6.3)
50, 4 FORMAT(20X,'DENSITY RATIO z ',F6,2T60,'ORIFICE OISCHARGE' COE'
51, *F='T90pFb,3)
52. 5 FURMAT(20X,#VELOCITY RATIO; a lF6*2#T60v#EFFECTrIVE SPACING.S/D
53, *Jw'190,F6,3)

S1,6 FtkAT (20Y, FLOW~ RATF RATIO= lFhs?,T6,FFFFCTVF ORJFICE 1Z
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PRINTI

55, *EH/DJ ',T90,F6,3)
56, 7 FORMAT(20XlIDEAL THETA a I#Fb,2TbO6,'DUCT HEIGHT~ ',T90o
57, *Fb,. ,' CM 'Fb, 3 #

t IN ')
58, 8 FORMAT(///40,I****

* * MIXING ANO CENTERPLANE DATA * * **///)

59, 9 FUORMA(13X,' DISTANCE'#T27p'DISTANCI'T140, IMIXING EFF, tS2,'CAP TN

bO, *ETAI,T64,'MAX THETA'T7b6,tPENETRATION',T88,PENETRATION'TI100,'AVE
61, * THETA',Tf12.*PATTERNt)
62, 20 FORMAT(17X,'X/H'rT30,IX/DJ'eT45.eETIT75,' X/DJ (TEMP)'DT88p X/D
63, *J (VEL)',T1t3,'FAClOR')
6 o .10 FORMAT(1OX,9(2XpFI0 4))
b65, it FORMAT(tHt,-T50'*** TABLE UF THETA VALUES ***'//)
b66 12 FORMATl(HOD,14,'X/H'F8e,4T3 O'X/DJ'F.B4/)

67, 13 FORMAt(T4,'/S:',T20olF10,4)
68, 14 FORMAT(TtbY/H'ITllr'Y/DJ'fTtl#'Y/ ')

69, 15 FORMAT(FS,3,F83,F6,3, T20,11 FIO.)

70, 16 FURMAT(20X,I*****t Yl346Ab,Ttl1,0*****l)
71, 17 FORMAT(1H I,//////20XZO * ******* AEROJET LIQUID ROCKET COMPANY IUL
72, *TIPLE SET INJECTION FLOW FIELD PR3GRAM ********f*///45XK(DEVEL

,

73, *OPED ON NASA LEWIS CONTRACT NAS 3159026)///)
74, C
75, RETURN
76, END

SAMPLE. INPUT
xcOT FIELD
S1NPUT
HD a 40000000E+01
CD a ,66130000E+00
XJ a ,13320000E+02
SD a ,20000000E+01
SH = ,50000000E+00
RRH3 a .22100000E+01
TIDEAL a *27590000E+00
RVEL' a ,24500000E+01
RTEMP .*22100000E+01
RvD3T ,.35000000E+00
IPRNT a +0
ITA a +1
NDSTR4 a t+
NO'LOT a= +1 +5, +0, *0,

40, +0
YF.'IRST ,00000000E+00
Y'DELI a .20000000E+02
xFIRST a ,O0000000E+00
xVEL: a .2S000000E+00
IPLOT = +0

$END
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